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1 Introduction

This note illustrates some basic phenomena of stratified flows computed with Nek5000 using
a Boussinesq approximation. We consider a two-dimensional flow with free-stream velocity
U past a cylinder of diameter D and examine blocking, the Brünt-Väsäillä frequency, and the
wave-like nature of stratified flow. Our discussion closely follows the introductory material
given by Tritton [?].

2 Governing Equations

We assume that the density of the fluid is given by ρ = ρ0 + ρ′(x, t), where the background
density ρ0 À ρ′ is constant. To first order, the perturbation ρ′ only acts through the
gravitational forcing in the momentum equations, given in dimensional form by

ρ0

(
∂u
∂t

+ u · ∇u
)

= −∇p + ρ0ν∇2u− g
(
ρ0 + ρ′

)
ŷ. (1)

The constant −gρ0ŷ can be absorbed into the pressure (as can any other potential field),
so the dynamical influence of the stratification is driven only by the perturbation density
ρ′. In addition to (1), we have the standard incompressibility constraint

∇ · u = 0, (2)

and the transport equation

∂ρ′

∂t
+ u · ∇ρ′ = κ∇2ρ′, (3)

which reflects the fact that the density perturbation is tied to a scalar quantity, such as
salinity or temperature, that satisfies a convection-diffusion equation. (Note that Nek5000
readily handles a variable ρ0 as well. The current studies, however, follow the formulation
given by (1)–(3).)
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We assume a linear profile for the initial condition of (3). That is,

ρ′y,0 :=
∂ρ′

∂y

∣∣∣∣
t=0

= constant.

Under these circumstances, there is an intrinsic timescale associated the stratification, which
is usually expressed by its inverse, namely, the Brünt-Väsäillä frequency:

NBV :=
(

g

ρ0
ρ′y,0

) 1
2

. (4)

We return to this in the discussion below but introduce it here, prior to nondimensionaliza-
tion, to stress that it is independent of any timescale associated with the external flow.

Before proceeding with the examples, we rescale the governing system of equations by
the length scale D and convective timescale D/U to arrive at the nondimensional system

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u− 1

Fr2
(ρ′ − y)ŷ (5)

∇ · u = 0 (6)
∂ρ′

∂t
+ u · ∇ρ′ =

1
PrRe

∇2ρ′. (7)

Here, we have slightly abused the notation by using the same symbols for the dimensional
and nondimensional variables; there will be no confusion, however, given the context in
which each is used. In addition to rescaling, we divided (1) and normalized the pressure by
ρ0, and have introduced three nondimensional parameters,

Re =
UD

ν
, Pr =

κ

ν
, Fr−2 =

gD2

ρ0U
2

∣∣ρ′y,0

∣∣ , (8)

which are, respectively, the Reynolds number, the Prandtl (or Schmidt) number, and the
Froude number. Note that the it is common to replace the Froude number by the Richardson
number, Ri := Fr−2. Finally, we have introduced an additional potential,

− 1
Fr2

yŷ, (9)

to remove the hydrostatic mode (associated with ρ′) from the pressure.

3 Spectral Element Simulations

We have computed steady-state flow past a cylinder at Re = 10 using the two-dimensional
mesh shown in Fig. 1(a). The mesh comprises E = 346 elements of order N = 7. A
uniform inflow of speed U = 1 is specified at the left boundary and symmetry conditions
are specified on the top and bottom boundaries. The Neumann (natural) condition for the
Stokes problem,

∂ui

∂n
+ p = 0, i = 1, 2,
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Figure 1: Examples of blocking phenomena in stratified flow at Re = 10: (a) spectral
element mesh, (E,N)=(384, 7), and steady-state streamfunction distribution for (b) no
stratification, (c) Fr−2=1000, Pr = 1, and (d) Fr−2=1000, Pr = 1000.
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is applied on the right boundary, which effectively corresponds to having p = 0 at the
outflow. It is for this reason that we use (9) to remove the hydrostatic contribution to the
pressure.

The solutions are time-marched to steady state. The initial condition for the unstrati-
fied case of Fig. 1(a) was u = (1, 0, 0). The converged steady-state velocity field of (a) was
used as the initial condition for the stratified cases (b) and (c). the initial density profiles
were ρ′ = −y. (The cylinder is centered at (0, 0).)

3.1 Steady State Results

Figures 1(b)–(d) show steady-state streamline patterns under different stratification condi-
tions. Case (b) is standard Navier-Stokes flow without stratification. It exhibits a classic
wake structure with flow separation at roughly 29 degrees from the horizontal axis and a
small recirculation zone of length ≈ D/4 aft of the cylinder.

The streamline patterns in Fig. 1(c) and (d) are in marked contrast to those in
(b). In Fig. 1(c), we see that there are wakes both in front and behind the cylinder,
while in (d) there is a wake only in front of the cylinder. In (c) and (d), the Froude
number is Fr = 10001/2, which corresponds to significant stratification. This results in
a phenomenon known as blocking, which occurs when the dynamic head of the fluid is
insufficient to overcome the potential energy barrier associated with climbing above (or
descending below) the cylinder. Fluid particles are essentially trapped at a given height.
As explained in Tritton [?], the length of the forward wake is determined by viscous effects,
and scales as O(Re/Fr2), provided the domain is sufficiently large.

While the flow upstream of the cylinder in Figs. 1(c) and (d) is similar in structure, the
downstream behavior is decidely different. The flow conditions in (c) and (d) are identical,
save that Pr = 1 in (c) and Pr = 1000 in (d). The change in the flow behavior can
be explained as follows. Through density diffusion, a fluid parcel that flows close to the
cylinder in case (c) takes on the local density by the time it reaches the cylinder apex. As
it passes the cylinder, it has a tendency to remain at its new height and thus only slowly
returns to its original height, resulting in an extended wake. For large Pr, however, the
density diffusion is small. A particle passing the cylinder thus retains its original density
and quickly returns to its original height after passing the cylinder. This results in the
streamline pattern of Fig. 1(d). (Note that the Schmidt number for salt water is Sc ≈ 700,
so Pr = 1000 is not far from being physically realizable.)

3.2 Unsteady Results

In addition to the steady phenomena depicted in Fig. 1, two-dimensional stratified flows
exhibit interesting dynamical behavior. Under the high loading implied by a small Froude
number, one can expect timescales that are significantly shorter than the convective timescale
of classic incompressible flow. To illustrate, we consider the following simplified model of
stratified flow. Assume that a fluid parcel with volume V is displaced a distance ∆y in a
body of fluid that is otherwise at rest. The restoring force is proportional to the volume of
the fluid, the difference between its density and the surrounding fluid, and the gravitational
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Figure 2: Wave-like response to sudden application of gravitation forcing for Fr−2=1000,
Pr = 1000: (a) time trace of v at point ”1” indicated in (b); (b) instantaneous streamline
pattern at t = 0.5.

5



constant, g. In dimensional units, we have

F = −V (
∂ρ

∂y
∆y)g.

This force accelerates the parcel in a direction opposite to ∆y, resulting in the equation of
motion

d2∆y

dt2
+

(
g

ρ

∂ρ

∂y

)
∆y = 0,

which obviously leads to simple harmonic motion with frequency

NBV :=

√
g

ρ

∂ρ

∂y
.

Because U=1 and D=1 in the current nondimensionalization, we have from (8) NBV =
Ri

1
2 = Fr−1, with corresponding period τBV = 2πFr.

Figure 2(a) shows the history of the vertical velocity component at the point indicated
by the “1” in Fig. 2(b). The initial conditions for u and ρ′ are taken to be the steady-state
flow conditions of Fig. 1(b), with Pr=1000. When the forcing is turned on, the density
distribution is far from equilibrium and oscillations ensue. The oscillations in the inset in
Fig. 2(a) correspond to a period of τ ≈ 0.257, in close agreement with τBV = .199. That
τ > τBV can be understood by the fact that, because of incompressibility and the boundary
conditions, the vertical displacement of any given fluid parcel must be associated with the
horizontal displacement of some other parcels that add mass to the displaced system but
do not add potential energy. As a consequence, the frequency will be lowered.

Tritton [?] carries the unsteady analysis further and points out that disturbances in
stably stratified flows can propagate as waves. Wave patterns are clearly evident in Fig.
2(b), which shows the instantaneous streamlines at time t = 0.5 for the flow associated
with Fig. 2(a). Note that this convective time corresponds to the time it takes a particle
in the free stream to move half a diameter. However, the wake structures and multiple
waves can be seen to extend several diameters away from from the cylinder at this early
time. We note that the loading is applied instantaneously throughout the domain, and
that the nonequilibrium displacement of ρ′ at t = 0 may already extend several diameters
in the initial conditions.) Nonetheless, it is clear from Fig. 2(b) and other similar early-
time images that information is propagating on a timescale that is much shorter than the
convective timescale.

Tritton [?] also derives a dispersion relationship for the wave phenomenon that gives
the frequency as a function of the vectorial wave number

ω = NBV sin θ,

where θ is the angle of the wave vector with respect to the vertical axis. From the preceding
estimates of τ , we can estimate the angle of the wave vector to be ≈ 50.6 degrees, which is
in reasonable agreement with the pattern observed near history point “1” in Fig. 2(b).
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4 Implications for Simulation

We close with a few numerical considerations encountered in these simulations.
First, because the bouyancy force is treated explicitly in Nek5000 and because it is

associated with a fast timescale (for small Fr), the timestep size will generally be much less
than the usual Courant-limited timestep.

Second, it is important to respect p = 0 at the outflow boundary, as much as possible.
Also, it is important to start the simulation close to equilibrium. Otherwise, the wave
motions can suck fluid in through the outflow boundary, which is usually disastrous.

Third, the wavelike nature of stratified flow implies a potential need for radiation
boundary conditions, if significant wave energy is to leave the domain through an artificial
domain boundary.

Fourth, we note that NBV is based upon the vertical density gradient. In the case of
a sharp interface, with densities ρ′1 and ρ′2 on either side, it should be redefined in terms of
the density jump ρ′2 − ρ′1.

Fifth, turbulence, if present, will generally yield an order-unity (effective) Prandtl/Schmidt
number.

Namely:
1) choice of ∆t

2) pressure boundary conditions
3) starting close to equilibrium
4) the potential need for radiation type boundary conitions (cite so and so)
5) turbulence
6) NBV must be modified in the case of sharp interfaces
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